Conformally Kähler surfaces and orthogonal holomorphic bisectional curvature
نویسندگان
چکیده
منابع مشابه
Strictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملun 2 00 6 On Kähler manifolds with positive orthogonal bisectional curvature
The famous Frankel conjecture asserts that any compact Kähler manifold with positive bisectional curvature must be biholomorphic to CP n. This conjecture was settled affirmatively in early 1980s by two groups of mathematicians independently: Siu-Yau[16] via differential geometry method and Morri [15] by algebraic method. There are many interesting papers following this celebrated work; in parti...
متن کاملCharacterization of Holomorphic Bisectional Curvature of GCR-Lightlike Submanifolds
We obtain the expressions for sectional curvature, holomorphic sectional curvature, and holomorphic bisectional curvature of a GCR-lightlike submanifold of an indefinite Kaehler manifold. We discuss the boundedness of holomorphic sectional curvature of GCR-lightlike submanifolds of an indefinite complex space form. We establish a condition for a GCR-lightlike submanifold of an indefinite comple...
متن کاملThe Holomorphic Bisectional Curvature of the Complex Finsler Spaces
The notion of holomorphic bisectional curvature for a complex Finsler space (M, F ) is defined with respect to the Chern complex linear connection on the pull-back tangent bundle. By means of holomorphic curvature and holomorphic flag curvature of a complex Finsler space, a special approach is emloyed to obtain the characterizations of the holomorphic bisectional curvature. For the class of gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometriae Dedicata
سال: 2014
ISSN: 0046-5755,1572-9168
DOI: 10.1007/s10711-014-0025-9